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Brownian rotors play an important role in biological systems and in future nanotechnological
applications. However the mechanisms determining their dynamics, efficiency, and performance
remain to be characterized. Here the F0 portion of the F-ATP synthase is considered as a paradigm
of the Brownian rotor. In a generic analytical model we analyze the stochastic rotation of F0-like
motors as a function of the driving free energy difference and of the free energy profile the rotor is
subjected to. The latter is composed of the rotor interaction with its surroundings, of the free energy
of chemical transitions, and of the workload. The dynamics and mechanical efficiency of the rotor
depend on the magnitude of its stochastic motion driven by the free energy difference and its
rectification on the reaction-diffusion path. We analyze which free energy profiles provide maximum
flow and how their arrangement on the underlying reaction-diffusion path affects rectification
and—by this—the efficiency. © 2008 American Institute of Physics. �DOI: 10.1063/1.3026736�

I. INTRODUCTION

Molecular motors play a central role in biological sys-
tems where they convert a free energy difference into me-
chanical force. There exist two fundamental mechanisms by
which this can be achieved.1 The free energy difference,
coming, e.g., from a chemical reaction, can be converted
directly into mechanical force by some kind of power
strike.2–4 The other mechanism is more sophisticated since
here the mechanical movement is provided by thermal fluc-
tuations of the motor.5–7 In the latter case the free energy
difference is transformed into entropic forces biasing the di-
rection of these fluctuations. Both mechanisms may also be
combined and work synergistically.8

An archetype of Brownian rotors is the F0 portion of the
F-ATP synthase.9–11 An electrochemical gradient of protons
or sodium ions across the inner membrane of mitochondria
builds up a free energy difference which is converted into a
mechanical torque. The latter drives ATP synthesis, the es-
sential energy carrier in living objects. One accepted descrip-
tive model for the torque generation of the proton driven
F-ATP synthase is briefly �Fig. 1� as follows: the F0 motor
consists of a rotary ring, carrying identical hairpinlike pro-
tomers in which aspartic or glutamic acid residues transport
protons along the electrochemical gradient. The ring is sub-
ject to thermal fluctuations and electrostatic interactions with
its molecular neighborhood. The latter results from the ro-
tor’s interface with a positively charged stator, which attracts
negatively charged �deprotonated� protomers of the rotor. In
addition, hydrophilic/hydrophobic interactions confine these
charged protomers to the hydrophilic stator region.9,10 The
protomer facing the hydrophobic membrane requires release

from this constraint through neutralization by a proton com-
ing from the access channels.12 These channels have contact
to the respective membrane sides. The frequency by which
the constraint is removed is proportional to the proton con-
centrations in the channel, or more precisely, to their activity
when electrical fields are present. A concentration or activity
difference in protons between the two channel access sites
builds up a corresponding probability difference to find one
protonated protomer, i.e., occupied proton carrier. This en-
tropic force directs proton flow toward equilibration of the
proton concentration difference. Rectification of this flow by
appropriate interactions then produces directed rotation and
torque.13

Although there exists valuable and detailed information
in literature about the mechanisms of rotation of the F0
motor14–16 and its transduction in ATP synthesis,17 many fun-
damental questions remain to be solved. How does the free
energy profile on the reaction-diffusion path, i.e., ring neigh-
borhood interaction, chemical energy, and workload, mediate
the effect of the driving free energy difference on proton
flow, and how does it rectify this flow to achieve directed
rotation? Is there an optimum arrangement and strength of
interactions for maximum rotation speed? In which way does
the binding strength of protons affect the ring rotation? We
could recently demonstrate that—depending on its
magnitude—an attractive interaction may support or hamper
fluctuation driven motion.18 What is the performance of the
ring motor, and when does it reach its maximum? Some of
the aspects mentioned above were addressed in previous
works by simulations or numerical techniques11,14 in which
many details of the biological system are considered. In con-
trast, we will develop here a generic analytical model to
obtain fundamental relationships that can answer the above
mentioned questions. This implies that we consider a model
that reduces details of the original biological system but still
conserves its fundamental properties. Especially for technical
applications, this will be of importance for the development
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of an optimal working �supra� molecular motor/nanomotor
which, triggered by chemical breakthroughs,19 has become
an emerging field.1

This paper is structured as follows. Based on the short
qualitative description of the operation mode above, an
analytical model of the F0 motor is presented. For didactical
reasons we start with a full rectified rotor, i.e., a perfect
coupling between proton flow and rotation, which is
achieved by the assumption that deprotonated protomers
are strictly confined to the hydrophilic stator, while proto-
nated protomers are confined to the hydrophobic mem-
brane region.12 This implies a simple circular topology of
the reaction-diffusion path, from which the optimum
arrangement of ring neighborhood interactions providing
maximum flow, i.e., rotation speed, is derived. This is
done in the absence and presence of external workload.
In the latter case, also the performance, defined as ex-
ternal work per time, is analyzed. In Sec. III we give up
the constraint of perfect rectification, which implies a
more complex diffusion-reaction path. We analyze the
coupling of flow and rotation and the stall workload, deter-
mining the efficiency of the rotor as a function of the
interactions.

II. MOTOR WITH CHECK VALVE MECHANISM

A. No workload

In our model we consider rotation by one protomer unit
as a cyclic process �Figs. 1 and 2�. Two states are distin-
guished: a protonated and a deprotonated one, where the lat-
ter refers to the maximum number of negatively charged
�deprotonated� protomers within the hydrophilic region.
Within each state the rotor undergoes diffusive motion within
some free energy landscape �Fig. 2�, which is determined by
the ring neighborhood interactions, e.g., electrostatic forces
between deprotonated protomers and the positively charged
stator, and hydrophilic/hydrophobic interactions. Transitions

between the states occur at the locations of the channels,
quantified by reaction rates k+ ,k− for protonation and depro-
tonation, respectively,

Deprotonated state �
k−

k+c

Protonated state, �1�

where c is the proton concentration in the channel. As sug-
gested in the original works9,10 and stated in Ref. 12, we
assume in this section that protomers must be the negatively
charged �deprotonated� when facing the positively charged
hydrophilic stator region, and neutralized �protonated� when
facing the hydrophobic membrane. So in our model very
high energy barriers confine the deprotonated and protonated
states to two complementary spatial sections which are inter-
connected by the chemical-reaction pathways. This makes
the topology of the diffusion-plus-chemical-reaction pathway
that of an oriented circle �Fig. 2�, and the free energy differ-
ence can drive the motor solely in one direction of rotation.
So the high energy barriers act as mechanical check valves
rectifying motion and maintaining a perfect coupling of pro-
ton flow and rotation.

Formally the state of the rotor is determined by its pro-
tonation state d, p and its local position within this state x.
The dynamics of the system consists of diffusion and chemi-
cal transitions, which are described by a set of two Smolu-
chowski equations20 to which chemical-reaction terms are
added. One obtains for the probability density,

- -

H+
c1c2

Hydrophobic area

+
-

H+

Rotation by one protomer unit

- -
X X X

+ +

Hydrophilic stator region with positively charged residues+
Electrostatic constraints for charged protomers

- Protonated / deprotonated protomers

Protomers in the state of transition

FIG. 1. �Color� Schematic showing the rotation of one protomer unit of the
F0 portion of the F-ATP synthase, marked with X. Protons of either mem-
brane side have access to the ring via channels. The concentration gradient
c1�c2 biases counterclockwise rotation �see text�, resulting in proton flow
in the gradient’s direction.
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FIG. 2. �Color� Free energy profile of the rotor �deprotonated state red,
protonated state green, and chemical transitions black� as a function of the
cyclic spatial variable x. The location of the channels in which protonation/
deprotonation takes place is marked by filled circles. Hydrophilic and hy-
drophobic interactions confine the deprotonated state to the left, the proto-
nated to the right section of the diffusion path �see text�, and transitions are
solely feasible by the chemical reaction. This implies that the diffusion-
reaction path has a circular topology �inset�. The free energy course during
one cycle on this path is marked by arrows �IV→ I→ II¯�. The choice of
proton concentrations c1�c2 makes the rotor run in counterclockwise direc-
tion and it returns to point IV �hatched circle� at a lower free energy state
�blue� −ln�c1 /c2�. The inset shows the sections of the diffusion and chemical
transition paths forming a circular topology and the corresponding diffusive
flows and chemical fluxes Jd ,Jd ,JI�II ,JIII�IV.
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�t�d�x,t� = �xDd�x���x − Fd�x���d�x,t� − � ,

�2�
�t�p�x,t� = �xDp�x���x − Fp�x���p�x,t� + � ,

where Di�x� �i=d , p� is the diffusion coefficient, which we
assume to be constant in the following, and the force Fi�x�
describes the interaction of the rotor with its surrounding. In
the one-dimensional �1D� case considered here, this me-
chanical force can always be derived from a local potential
Fi�x�=−�i��x�. The term � is derived from the chemical re-
action �1� and describes protonation and deprotonation via

� = k+c1�d�x,t���x − xI�II� − k−�p�x,t���x − xI�II�

+ k+c2�d�x,t���x − xIII�IV� − k−�p�x,t���x − xIII�IV� ,

�3�

where c1, c2 are the proton concentrations in the respective
channels. The delta distribution ��x−xA�B� locates chemical
reactions on the two cross points of chemical transition and
respective diffusion paths which are labeled by the roman
subscripts A,B=I , . . . , IV �Fig. 2�. Since the rotor must be in
some state, conservation of probability holds,

�
x�Sd

�d�x,t�dx + �
x�Sp

�p�x,t�dx = 1, �4�

where Sd and Sd are the spatial sections to which the rotor is
confined in the deprotonated/protonated state.

The stochastic motion of ring rotation is directly related
to the diffusive probability flow which in the respective pro-
tonation states has the form

ji�x,t� = − Di��x − Fi�x���i�x,t� . �5�

The chemical flux at the transition between deprotonated and
protonated states is

jI�II�t� = k+c1�d�xI�II,t� − k−�p�xI�II,t� ,

�6�
jIII�IV�t� = k−�p�xIII�IV,t� − k+c2�d�xIII�IV,t� .

In the steady state the probability densities become sta-
tionary �i�x , t�→�i�x� , i=d , p and conservation of flow
holds. For diffusive flow this implies ji�x , t��Ji. In addition,
the circular topology of the diffusion-reaction path implies
that diffusive flow and chemical flux are constant throughout
this path, i.e., when we consider flow in the direction
IV→ I→ II→ III→ IV, we obtain

Jd = JI�II = Jp = JIII�IV � J . �7�

We will now derive the steady state proton flow J, and
hence steady state rotation. This requires determination of
the steady state probability densities at the transition points
�I=�d�xI�, �II=�p�xII�, �III=�p�xIII�, �IV=�d�xIV�. On the dif-
fusion paths the respective gradient of these probability den-
sities �A−�B with �A,B�= �II , III� , �IV, I� maintains the cor-
responding diffusive flow. By generalization of Fick’s law
for gradient driven diffusion, we could recently derive this
flow compactly as a function of occupation probability in,
and first passage time through the path.21 In detail for a per-
fect absorbing boundary �B=0, unidirectional flow in the
steady state is

JA→B =
nA→B

�A→B
�A, �8�

and vice versa for B→A. Here

�A→B = D−1�
xA

xB

dxe��x��
xA

x

d�e−���� �9�

is the regular mean first passage time,22 and

nA→B = �A
−1�

xA

xB

��x�dx �10�

is the specific occupation number, which by �AnA→B defines
the probability to find the system within the diffusion path.
This number is independent of the boundary value �A as long
as non-self-interacting diffusing systems are considered,
which is the case in our model �see Eq. �2��. Bidirectional
steady state flow for arbitrary values �A,�B is simply the
superposition of unidirectional flows, JA�B=JA→B+JB→A.
Since this flow vanishes for equal boundary densities,23 Eq.
�8� implies nA→B /�A→B=nB→A /�B→A. The generalized mac-
roscopic Fick’s diffusion law then reads as

JA�B =
n

�
��A − �B� , �11�

with symmetrized first passage time � and specific occupa-
tion number n �Ref. 24�,

� = 1
2 ��A→B + �B→A� , �12�

n = 1
2 �nA→B + nB→A� . �13�

Both parameters depend on the interaction � by18,21

n =
L

2
�e−��x�� , �14�

5 10 15 20 25
0.0

0.5

1.0

1.5

2.0
J τ0

ln(K) = -g0 +ln(<e
-Φp>Lp) - ln(<e

-Φd>Ld)

FIG. 3. Proton flow as a function of the constant K �see Eq. �20��, which
comprises ring neighborhood interaction and proton binding strength of the
proton shuttle �protomer�. The protonated and deprotonated states are as-
sumed to have identical diffusion properties �Lp=Ld, diffusion constant D�,
and potentials are constant, i.e., �p=Lp

2 /2D=�d=Ld
2 /2. Flow is normalized to

the first passage time �0= �Lp+Ld�2 / �2D�, i.e., the time needed to pass the
whole diffusion length L=Lp+Ld. Two scenarios are shown, c1=10−6 ,c2

=10−8 �narrow curve� and c1=10−5 ,c2=10−9 �wide curve�. Note that accord-
ing to Eq. �23� maximum flow is located at K−1=	c1c2=10−7. The dashed
curves are the approximations according to Eq. �22� for the first scenario.
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� =
L2

2D
�e−��x���e��x�� , �15�

where the brackets denote the spatial average � �=1 /L
0
L,

with L and D as the length and diffusion coefficients on the
respective path.

When we set diffusive flows of Eq. �11� and chemical
fluxes of Eq. �6� according to Eq. �7� equal J, we obtain a set
of four linear equations for �I , . . . ,�IV.

�
JI�II = k+c1�I − k−�II

Jp = JII�III = np/�p��II − �III�
JIII�IV = k−�III − k+c2�IV

Jd = JIV�I = nd/�d��IV − �I�
� = J . �16�

In addition, conservation of probability �Eq. �4�� to find
the system within some state must hold, i.e., when expressed
in terms of specific occupation probabilities �Eq. �10�� this
reads as

�InI→IV + �IInII→III + �IIInIII→II + + �IVnIV→I = 1. �17�

So in summary we have five linear equations from which
the four probability densities at the transition points
�I , . . . ,�IV and steady state flow J can be obtained. When we
assume that the protonation/deprotonation reaction rate is
much faster than diffusive motion of the motor, i.e., access of
protons from the bulk to the rotor is not limiting rotation,25

flow is obtained as

J =
1
2K�c1 − c2�

�p + Kc1Kc2�d + K�c1 + c2�
�p + �d

2
+ K�c1 − c2�

���p + ��d�
2

, �18�

with

�� = 1
2 ��A→B − �B→A� �19�

as the asymmetric counterpart of the symmetric first passage
time � �Eq. �12��. �� quantifies the asymmetry of the inter-
action ��x� and vanishes when ��x� is symmetric on the
diffusion path. The generalized equilibrium constant

K =
k+

k−

np

nd
= e−g0

�e−�p�x��
�e−�d�x��

Lp

Ld
�20�

comprises the ring neighborhood interaction � and the stan-
dard free energy of protonation

g0 = − ln�k+/k−� . �21�

Note that the latter is related to the acid dissociation constant
of the proton carrier by g0−2.3pKa. The term equilibrium
constant becomes evident when one considers the system
under equilibrium conditions, i.e., c1=c2=c, and hence
�I=�IV, �II=�III, and �k+ /k−�c=�II /�I. Then the definition
of the specific occupation number implies that Kc gives the
ratio of the occupation probabilities N=�n, i.e., Kc
=Np�c� /Nd�c�. Thus, procedures that favor the probability to
find the system in the protonated state, e.g., lowering g0 or an

increase/decrease in the binding strength in the protonated/
deprotonated ��p↓ ,�d↑� state, increase K and vice versa.

In the limiting cases of low and high concentrations, Eq.
�18� has the form of a Fick’s or inverse Fick’s diffusion law,
respectively, i.e.,

Jlow  1
2�p

−1K�c1 − c2� ,

�22�
Jhigh  1

2�d
−1K−1�c2

−1 − c1
−1� .

Hence, increasing K by increasing the probability to find the
rotor in the protonated state increases flow in the setting of
low proton concentrations, and vice versa for high proton
concentrations. This implies an optimum ratio of occupation
probabilities, reflected by K, for which flow, and hence rota-
tion speed, reaches a maximum �Fig. 3�. For symmetric in-

IV
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IV‘

U p

U dI
U

c
c

+⎟⎟
⎠

⎞
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⎝

⎛
−

2

1ln

pd UUU +=

FIG. 4. �Color� Free energy landscape for a motor working against constant
external workload. For simplicity, the free energy related to internal ring
neighborhood interactions � is not shown. We assume that high energy
barriers, acting as check valves, confine the motor to the left diffusion path
in the deprotonated and to the right in the protonated state. The motor has to
afford the work Ud=−FLd in the deprotonated and Up=−FLp in the proto-
nated state, i.e., after one complete turn U=Up+Ud, by gaining the free
energy �G+U=−ln�c1 /c2�+U.
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teractions, i.e., ��=0, Eq. �18� determines this as

Kmax = 	�p/�d/	�c1c2� . �23�

The above considerations may be formulated in a very

elegant way in terms of potentials, which allows generaliza-
tion to the case of external workload. By defining the poten-
tials of the respective driving forces as

Gi = − ln�Kci� , �24�

we obtain

J =
1

2

sinh�− �G/2�
�̄a cosh�− �G/2� + ��a sinh�− �G/2� + �̄g cosh��G1 + G2 − ln��d/�p��/2�

, �25�

with �G=G1−G2=−ln�c1 /c2� as the free energy gained
during 1 cycle on the reaction-diffusion path �Fig. 2�, and

X̄a= �Xp+Xd� /2 as the arithmetic, and X̄g=	XpXd as geomet-
ric mean values of the variable X over the protonated and
deprotonated states. It should be mentioned that Eq. �25� also
holds when the standard free energy of protonation �see Eq.
�21�� differs in the respective channels. This situation occurs
when not only a chemical but also an electrochemical gradi-
ent is present with �g0 as the membrane potential. According
to Eqs. �20� and �24� this implies two constants K�1�, K�2� and
corresponding potentials Gi=−ln�K�i�ci� with the free energy
difference �G=−ln�c1 /c2�+�g0.

With the above equation one can now determine the op-
timum relation of ring neighborhood interaction quantified
by � and standard free energy of protonation g0 to achieve
maximum flow, i.e., rotation. In the first step, we vary the
free energy profile without changing the first passage times.
This can be achieved by shifting the standard free energy of
protonation g0, and/or according to Eqs. �9�–�15� by constant
shifts of �p and �d. Equation �25� then predicts flow maxi-
mum for

G1 + G2 = ln��d/�p� . �26�

The impact of this condition for the free energies Gi becomes
best evident when first passage times in the particular proto-
nation states are identical, i.e., G1=−G2. Instead of taking G1

and G2 as opposing driving forces, one can interpret G1 and
−G2 as synergistic driving forces, i.e., maximum flow occurs

when driving forces cooperate optimally. For nonidentical
first passage times, one has to adjust by ln��p /�d�.

We now vary the first passage times and simultaneously
keep condition �26� fulfilled by appropriate shifts of free en-
ergy components. The Cauchy–Schwarz inequality then
states for the symmetrized first passage time �Eq. �15�� that
�i�Li

2 / �2D� �i= p ,d�, i.e., the first passage time reaches its
minimum value when the interaction potentials become con-
stant on the respective diffusion paths. Since then �� van-
ishes, flow in Eq. �25� reaches its maximum

Jmax =
1

2

sinh�− �G/2�
�̄a cosh�− �G/2� + �̄g

. �27�

B. With external workload

The motor is now supposed to work against an external
constant force F. As in Sec. II A, we assume that high energy
barriers confine deprotonated and protonated states to
complementary diffusion paths �see inset in Fig. 2�. The free
energy landscape is that of Sec. II A with an additional po-
tential term −Fx, which accounts for the external workload.
After 1 cycle the external work is U=Up+Ud=−F�Lp+Ld�
�Fig. 4�. Flow is determined as in Sec. II A �Eq. �25�� after
adjusting parameters for the external workload �see the
Appendix�. Free energies are adjusted to G1+G2→G1+G2

+U and the free energy gained after 1 cycle �G→�G+U
=−ln�c1 /c2�+U,

J =
1

2

sinh�−
�G + U

2
�

�̄a cosh��G + U

2
� + sinh�−

�G + U

2
���a + �̄g cosh�G1 + G2 + U − ln��d/�p�

2
� . �28�

We focus on simple constant ring interactions �i in the re-
spective diffusion paths, which guarantees that the first pas-
sage times remain constant when interactions are varied �Eq.
�9��. The potential G may then be decomposed into a com-
ponent related to the external force and one related to the
internal �ring neighborhood� interactions and chemical tran-
sitions, Gi=Gext+Gi,int, with �see the Appendix�

Gi,int = �p − �d + g0 − ln�ci� , �29�

Gext = − ln��1 − e−Up�/�1 − e−Ud�� . �30�

This separation makes the interdependence of ring neighbor-
hood interaction � and standard free energy g0 concerning
their effect on the driving forces Gi,int evident. Simulations
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ofthe F0 ring motor working against at constant workload by
Elston et al.14 demonstrated for a stronger binding in the
deprotonated state, i.e., a decrease in �d, that maximum ro-
tation rate occurred at a stronger proton binding value, i.e., a
decrease in g0. This is directly predicted by the form of Gint

since a balanced shift of interaction and standard free energy
keeps Gint constant, i.e., in this case the driving force at
which maximum rotation rate occurred.

Figure 5 demonstrates that increasing workload U re-
duces flow and shifts the maximum toward interactions fa-
voring the protonated state. This is evident since maximum
flow occurs for

G1 + G2 + U = ln��d/�p� , �31�

i.e., at

�p − �d + g0 = − Gext + 1
2 �− U + ln�c1c2� + ln��d/�p�� .

�32�

When flow is considered as a function of workload �Fig.
6�, one obtains a more and more parabolic shape of the
curves, when internal interactions favor the protonated state,
i.e., ��p−�d+g0� decreases. This parabolic behavior implies
that the motor even under higher workload conditions main-
tains sufficient performance. For the determination of this

motor performance, the following consideration is useful.
When a single motor is at some position x, it performs the
external mechanical work dW=−Fdx after moving to x+dx.
For an ensemble of motors, which is in the steady state, the
number of motors moving dx at position x is Jdt, i.e., the
local work performed is Jdt�−F�dx. Performance as work per
time over the whole length is then

P = �
0

L

dx�− F�J = UJ . �33�

Interestingly the motor may run at high performance even
when workload increases as long as “tuning” by the interac-
tion ��p−�d+g0� is appropriate �inset in Fig. 6�.

III. MOTOR WITHOUT CHECK VALVE MECHANISM

A. No workload

We now consider the rotor without the constraint that
infinite high energy barriers confine diffusive motion to
complementary sections of the diffusion path in the respec-
tive protonation states �Fig. 7�. This implies that the rotor has
the option to move in both directions at the cross points of
chemical transition and diffusion paths. When, for example,
the rotor has undergone the chemical transition �protonation�
I→ II, it may proceed its way in the protonated state either in
the counterclockwise �right� or clockwise �left� direction.
The gain of free energy �−ln�c1 /c2�� after one completed
cycle is the same for both ways. Hence, it is important to
stress that backward rotation, which in our example in Fig. 7
is clockwise, is not just a phenomenon of fluctuations but a
“thermodynamically allowed” way to gain free energy. From
the view of the protons, this backward rotation can be inter-
preted as leak flow, which reduces the coupling between
overall flow proton flow and directed rotation.
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FIG. 5. Flow under different workload conditions U as a function of ring
neighborhood interaction � and standard free energy of protonation g0.
Proton concentrations are c1=10−6 ,c2=10−8. The geometric and diffusion
parameters are that of Fig. 3, i.e., equal for the protonated and deprotonated
states. This implies Gext=0 �Eq. �30��, i.e., maximum flow occurs at
�p−�d+g0=1 /2�−U+ln�c1c2��, i.e., at −16.1, −17.1, and −18.1 �Eq. �32��.
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FIG. 6. �Color� Flow as a function of workload U for different ring neigh-
borhood interactions �p−�d+g0=−16.1�black� ,−17.1�blue� ,−18.1�red�
corresponding to maximum flow for U=0,2 ,4 �see Fig. 5�. At workload
U=4.6=ln�c1 /c2�=−�G, flow and hence motor action vanishes. The inset
shows the corresponding performance �Eq. �33�� with the same color
labeling.
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In the steady state the conservation of flow holds when
chemical flux is distributed into diffusive flows on the left
and right paths and vice versa �inset in Fig. 7�. In cyclic
direction �see also Eq. �7��, this reads as

�34�

Since the left and right diffusive flows refer to rotation in the
opposite direction, the effective rotation is

Jrot = Jd
�l� − Jp

�l� = Jp
�r� − Jd

�r�, �35�

where the latter relation follows Eq. �34�. One can define the
fraction f of overall flow J which is directed into effective
rotation

f = Jrot/J = �Jd
�l� − Jp

�l��/�Jp
�l� + Jp

�r�� , �36�

which can also be interpreted as the coupling strength of
rotation to proton flow. In the absence of workload, the
relation �f �	1 holds since the conservative drift forces
Fi�x�=−�i��x� conserve the direction of diffusive flows
�Ji

�l� ,Ji
�r�� within a protonation state i=d , p. This direction is

then solely determined by the probability gradient, i.e., in our
setup with c1�c2 it points from II→ III and IV→ I. Hence,
�Jd

�l�−Jp
�l��	max��Jd

�l�� , �Jp
�l���	 �J�. The relation �f �	1 does not

hold generally for nonconservative forces, e.g., when a con-
stant external workload is present. Depending on its strength,
this force may rotate the motor within the protonated state,
and by this decouple rotation Jrot from proton flow J, a situ-
ation we will discuss below.

Since in the steady state the generalized Fick’s diffusion
law �11� holds for the particular diffusive flow components
on the left or right paths,

JA�B
�l,r� = ni

�l,r�/�i
�l,r���A − �B� = Ji

�l,r�, �37�

with �A,B�= �IV, I� , �II , III� and i= p ,d, one obtains with
Eqs. �14� and �15�,

f = �1 +
nd

�r�

nd
�l�

�d
�l�

�d
�r��−1

− �1 +
np

�r�

np
�l�

�p
�l�

�p
�r��−1

= �1 +
Ld

�l�

Ld
�r�

�e�d
�l�

�

�e�d
�r�

�
�−1

− �1 +
Lp

�l�

Lp
�r�

�e�p
�l�

�

�e�p
�r�

�
�−1

, �38�

where L�l� and L�r� are the lengths of the left and right
diffusion paths, and � � denotes the spatial average on the
particular paths. There is no rotation f =0 when free energy
landscapes of the protonation states are congruent, i.e.,

Ld
�l��e�d

�l�
� / �Ld

�r��e�d
�r�

��=Lp
�l��e�p

�l�
� / �Lp

�r��e�p
�r�

��. Conversely
free energy profiles favoring complementary paths in the re-
spective states synergistically increase rotatory efficiency
�f �→1, e.g., as in Fig. 7 a barrier on the right of the depro-
tonated state �d

�r�↑ and on the left of the protonated state
�p

�l�↑. Infinite high barriers imply maximum efficiency f =1
since they act as check valves, a situation discussed in Sec.
II. In the real motor �Fig. 1� the synergism of free energy
profiles is realized by the high hydrophilic-hydrophobic en-
ergy barrier which confines deprotonated protomers to the
hydrophilic stator region. Since there is at least one deproto-

nated protomer in either protonation state, backward rotation
is impeded, i.e., f =1. However, the situation would be dif-
ferent for motors in which the maximum number of depro-
tonated protomers facing the hydrophilic stator is one. In this
case there would be no mechanism preventing the rotor from
backward rotation in the protonated state.

The steady state flow J can be derived as in Sec. II,
based on the conservation of flow �Eq. �7�� and overall prob-
ability �Eq. �17��. To apply Eq. �16� for this derivation, one
has to formulate diffusive flows in the form of a generalized
Fick’s diffusion law �Eq. �11��. This is not restricted to dif-
fusion on a linear path. Instead it holds for steady state dif-
fusion through arbitrary domains as long as the forces acting
inside are conservative, i.e., when they are derived from a
potential F�x�=−���x�.21 Here the domain is no longer a
simple path as in Secs. II, instead it consists of a left and a
right path in either protonation state as the inset in Fig. 7
shows: red/magenta in the deprotonated and green/dark
green in the protonated state. The boundaries of the domains
are the cross points �A,B�= �IV, I� , �II , III�. The application
of Eq. �11� requires the knowledge of the specific occupation
number and first passage time. The specific occupation num-
ber is simply the sum of the specific occupation number of
the left and right diffusion path. In both protonation states
following Eq. �14�,

n = n�l� + n�r� = L�l�/2�exp�− ��l��� + L�r�/2�exp�− ��r���

= �L�l� + L�r��/2�exp�− ��� . �39�

To obtain the first passage times, one has to keep in mind
that Eq. �11� holds for the particular flow components
on either left or right diffusion path �Eq. �37��. Since
Jd,p=JA�B=JA�B

�l� +JA�B
�r� and n=n�l�+n�r�, the inverse first

passage time is derived as the occupation probability
weighted sum of the inverse first passage times on the left
and right diffusion paths,

1

�
=

n�l�

n�l� + n�r�
1

��l� +
n�r�

n�l� + n�r�
1

��r� . �40�

Insertion of specific occupation number and first passage
time from the above equations in Eqs. �11� and �16� then
provides, as in Sec. II, flow J from Eqs. �18� and �25�.

B. With workload

Now the rotor is now supposed to work against a con-
stant force. For didactical reasons and to avoid too much
complexity without gain of physical information, we will not
consider the topology of the reaction-diffusion path in its
most general form as in Fig. 7. Instead we will confine the
rotor by high energy barriers to the left path in the deproto-
nated state. In the protonated state it has the choice to take
both ways �Fig. 8�. In the presence of an external force this
option has strong implications on the topology of the free
energy landscape. When check valves were present, this
landscape would be just a simple, nonsingle valued function
of a 1D cyclic reaction-diffusion path, i.e., after one turn the
motor gains the free energy �G+U �Fig. 4�. However, now
the motor has the option to diffuse either along the left or
right path in the protonated state, i.e., it may gain the free
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energy �G+U on the right versus �G on the left path �Fig.
8�. In other words, this bifurcation of the reaction-diffusion
path leaves the option for the motor to proceed its way in the
clockclockwise or in the counterclockwise direction; how-
ever, external work is only performed in the latter case. In
addition, gain of free energy is even higher when taking the
“inefficient” path �G
�G+U. The effective rotational
component as determined from Eq. �35� is

Jrot = Jd
�l� − Jp

�l� = J − Jp
�l� = Jp

�r�, �41�

where we exploited that the motor is confined to the left
diffusion path in the deprotonated state, i.e., J=Jd

�l�. The ef-
ficiency factor f = �1−Jp

�l� /J� has not the simple form as in
Eq. �38� since the external workload produces a nonconser-
vative force field in the protonated state. For the determina-
tion of flow J and its effective rotational component Jrot see
the Appendix.

We first consider the case that there is no energy barrier
in the protonated state which could bias the direction of ro-
tation, i.e., �p

�l�=0 �Fig. 9�. Decreasing the standard free en-
ergy g0 makes effective rotation first pass through a maxi-
mum and then vanish. At this point proton and leak flow are
equivalent J=Jp

�l�, and flow on the right path in the proto-
nated state is absent Jp

�r�=0 �Eq. �41��. Further lowering of g0

decreases the transition probability from the protonated to
the deprotonated state and the rotor prefers to remain in the
protonated state. The rotor runs along the direction of the
external force, Jrot
0, and by moving along the circular free
energy landscape of the protonated state, it gains the free
energy −U per round. We assume now constant interaction
potentials on the left �p

�l� and right �p
�r� sections of the dif-

fusion path in the protonated state and in the deprotonated
state �d. At the threshold value g0 for which Jrot vanishes,
workload U and ring neighborhood interactions satisfy �see
the Appendix�

eU =
1 + e�p

�l�−�d+g0−ln c2

1 + e�p
�l�−�d+g0−ln c1

. �42�

This equation also makes the interdependence between stan-
dard free energy g0 and the barrier �p

�l� evident. The higher
the barrier is, the lower the threshold for g0 to make rotation
vanish is, i.e., a high barrier counteracts the external force.
Interestingly the interaction on the right site in the protonated
state �p

�r� does not appear in the equation, i.e., it has no effect
on the direction of rotation. One could argue that inversely to
the barrier effect of �p

�l�, a high �p
�r� should facilitate negative

�clockwise� rotation in the direction of the external force. For
analysis let us first consider a situation in which the rotor
runs against �counterclockwise� the external force, i.e.,
Jrot�0. Equation �41� then implies Jp

�r��0. When we intro-
duce a barrier on the right site by elevating �p

�r�, we reduce
Jp

�r� but it does not vanish or become negative since this
barrier also works against the clockwise rotation in the di-
rection of the external force. In the limiting case �p

�r�→ +�,
Jp

�r�, and hence Jrot approach zero �Eq. �41��, but they never
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FIG. 9. �Color� Flow, which is effectively transformed into counterclock-
wise rotation, i.e., against the external force, as a function of the standard
free energy of protonation g0=−ln�k+ /k−�. Concentrations are c1=10−6 and
c2=10−8, and potentials on the paths forming the way in the counterclock-
wise direction are �d=�p

�r�=0. The workload is U=2. A high energy barrier
�p

�l�=15 prevents the motor from backward rotation �black line�, whereas no
barrier �p

�l�=0 �blue line� implies clockwise rotation Jrot
0 when the energy
level of the protonated state is lowered �g0 decreases�.
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are as in Fig. 9. The standardized free energy of the protonation was chosen
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function �Eq. �42�� demonstrates.
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FIG. 8. �Color� Left: free energy topology for a motor working against
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left diffusion path in the deprotonated state. In this state, the motor first has
to afford the work Ud �IV→ I� before free energy is gained by protonation
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�l�. So the bifurcation of the reaction-diffusion path at point II implies
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�IV�� and gain free energy. For simplicity the internal interactions �p are not
shown on the left, but on the inset right which has to be superimposed on the
free energy profile on the left.
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become negative, i.e., there is no change in the direction of
rotation. So in summary �p

�r� has no effect on the direction of
rotation. The above equation also defines the maximum
workload U0 for which rotation against the external force is
maintained. A workload above this threshold implies back-
ward rotation. When the barrier height �p

�l� is raised, this
threshold increases, and for �p

�l�→ +� it asymptocally
reaches the free energy difference U0→−�G=ln�c1 /c2�
�Fig. 10 and 11�.

IV. DISCUSSION AND CONCLUSION

Whereas past interest of theorists mainly focused on the
working principles of linear motors,26–28 in this paper we
presented a comprehensive analytical model of F0-like
Brownian rotors, which are archetypes of rotatory biological
molecular motors. These rotors transform a free energy dif-
ference maintained by an electrochemical gradient into me-
chanical work by means of random Brownian motion. In
contrast to the classical flashing ratchet concept,29 in which
on a molecular level chemical energy of the motor is directly
transduced via a power strike mechanism into mechanical
energy,2,30 these types of motors convert the free energy dif-
ference into entropic forces.5,31,32 This is realized by �chemi-
cal� transitions between different free energy profiles, the
latter biasing motion into certain directions. Directed average
motion results from different transition rates at different lo-
cations. In the case of the F0 rotor, this is realized by differ-
ent cation �proton� concentrations in the respective access
channels. Note that these transitions—although they may al-
ter the free energy of the motor state—do not alter the me-
chanical energy at the point of transition.32 In contrast, the
latter would be the basic mechanism of a classical flashing
ratchet.

To make a Brownian rotor run optimally requires the
following: the free energy difference must be converted into
maximum average motion, and—in addition—this average
motion must be rectified into one direction, as in linear
motors.33 We demonstrated that in our system free energy
may be gained by forward as well as backward rotation. This
is important since it demonstrates that backward movement

is not only due to fluctuations. In our case it exists also as
average motion on certain segments of the diffusion path—
i.e., the leak part—and is a consequence of the topology of
the diffusion-reaction path and the overlying free energy
profile.

These considerations stress the importance of the inter-
action of the rotor with its surrounding. For F0-like rotors we
derived analytical expressions for the dependence of flow on
interactions, determining the maximum flow for a given free
energy difference. It could be demonstrated that even under
high workload conditions optimum interactions implied a
high performance of the motor. Furthermore the arrangement
of interactions with respect to its rectifying property was
analyzed. The latter determines the maximum workload the
rotor can accommodate. However, only under perfect “check
valve” conditions the maximum workload approaches the
driving free energy difference. In its biological realization
this situation is almost accomplished, since in either proto-
nation state, at least one deprotonated protomer is confined
to the hydrophilic stator region �see Fig. 1�. This problem of
rectifying is typical for molecular rotors that work in the
strong friction limit, i.e., when motion is overdamped and
inertia effects are absent. Macroscopic rotors may overcome
this problem by exploiting, in addition, the rectifying effect
of inertia, e.g., by some fly wheel mechanisms.
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APPENDIX: MATHEMATICAL DERIVATION OF ROTOR
DYNAMICS

In our model the motor gains free energy by running
through an assembly of diffusion and chemical transition
paths �Figs. 2, 4, 7, and 8�. In the absence of external forces,
diffusion connected cross points of diffusion and chemical
transition, i.e. �IV,I� and �II,III�, exhibit the same free energy
level which allows to write diffusive flow in the form of a
Fick’s diffusion law �Eq. �11��. This was the basis to derive
steady state flow throughout the system, i.e., diffusive flow
and chemical flux �Eqs. �18� and �25��. When the motor has
to perform a constant workload, i.e., a constant external force
is present, these cross points exhibit different free energy
levels, which in the general case depend on the path the
motor takes �Fig. 8�. To integrate this in a more general
derivation of flow, one has to start with the basic equation
�8�, which relates unidirectional diffusive flow in the steady
state through some domain to specific occupation number
and first passage time. Unidirectional means that the domain
has two boundaries: one acting as a particle source with con-
stant concentration/probability density, the other as a pure
absorber. In our model the domain consists of the diffusion
paths connecting two cross points, which act as boundaries.
Since no self-interaction is assumed, bidirectional flow be-
tween the boundaries is just the superposition of respective
unidirectional flows, i.e.,
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FIG. 11. Workload U0 for which rotation vanishes as a function of the
barrier �p

�l� according to Eq. �42�. Standard free energy is g0=−16.1 and
concentrations are c1=10−6, c2=10−8. High barriers, which favor the coun-
terclockwise rotation against the external force ��p

�l�→ +��, make the work-
load approach the free energy difference U0→ ��G�=ln�c1 /c2�=4.6.
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JA�B =
nA→B

�A→B
�A −

nB→A

�B→A
�B, �A1�

with �A,B�= �IV, I� , �II , III�. The above equation is a gener-
alization of Eq. �11� and is valid in general for all types of
drift forces, i.e., conservative and nonconservative, which act
within the domain.21 In the steady state flow, i.e., chemical
flux JI�II ,JIII�IV �Eq. �6�� and diffusive flow JIV�I

=Jd ,JII�III=Jp is constant throughout J �Eq. �7��. Hence with
Eq. �A1� for the diffusive flows, Eq. �6� for the chemical
fluxes, and Eq. �17� for the conservation of probability, we
have a system of five linear equations determining the four
probability densities at the cross points �I , . . . ,�IV and flow
J. When we assume that the chemical reactions, i.e., proto-
nation and deprotonation, are much faster than rotor diffu-
sion, flow is obtained as

J = �c1
nII→III

�II→III

nIV→I

�IV→I
− c2

nI→IV

�I→IV

nIII→II

�III→II
��c1�nII→III

�II→III
nIV→I

+
nIV→I

�IV→I
nII→III� + c2�nIII→II

�III→II
nI→IV +

nI→IV

�I→IV
nIII→II�

+
k−

k+
�nI→IV

�I→IV
nIV→I +

nIV→I

�IV→I
nI→IV�

+ c1c2
k+

k−
�nII→III

�II→III
nIII→II +

nIII→II

�III→II
nII→III��−1

. �A2�

The above equation is valid for all diffusion path topologies
connecting the cross points �IV,I� or �II,III�.

1. Rotor with check valve mechanism

We will first consider the more simple case that high
barriers act as mechanical check valves and confine the rotor
in the protonated state to the right, in the deprotonated state

to the left path �Figs. 2 and 4�. This arrangement avoids that
the free energy becomes a multivalued function of the diffu-
sion path in either protonation state, a case which we will
discuss later on. Hence, the free energy level � of diffusion
connected cross points differs by the workload one has to
afford to get from one point to the other. With constant
force F on the respective diffusion paths, one gets �I−�IV

=Ud=−FLd in the deprotonated and �III−�II=Up=−FLp in
the protonated state �Fig. 4�. Diffusive flow vanishes when
the probability densities exhibit the same chemical activity,
i.e., �IV=eUd�I and �II=eUp�III. Together with Eq. �A1� this
implies that

e−�A
nA→B

�A→B
= e−�B

nB→A

�B→A
, �A3�

where �A,B�= �IV, I� or �II , III�. This suggests to normalize
the specific occupation number by the free energy level,
ñA→B=e−�AnA→B. With symmetrized quantities

ñ = 1
2 �ñA→B + ñB→A� , �A4�

� = 1
2 ��A→B + �B→A� , �A5�

one obtains from Eq. �A3�

ñA→B

�A→B
=

ñB→A

�B→A
=

ñ

�
. �A6�

This enables us to formulate a Fick’s diffusion law, which is
similar to that of Eq. �11� except that probability densities are
replaced by corresponding activities

JA�B =
ñ

�
�e�A�A − e�B�B� . �A7�

Insertion of the normalized specific occupation numbers
in Eq. �A2� and considering Eqs. �A6� and �A7�, leads to

J =

c1

c2
e−U − 1

� c1

c2
e−U + 1���p + �d� + � c1

c2
e−U − 1���ñp

ñp

�p +
�ñd

ñd

�d� + 2e−Uc1
k+

k−

ñp

ñd

�d + 2
1

c2

k−

k+

ñd

ñp

�p

. �A8�

Here U=Up+Ud denotes the workload performed after one complete cycle, and �ñ=1 /2�ñA→B− ñB→A�. One can express the
above relation in terms of potentials. The driving forces are

Gi = − ln� k+

k−

ñp

ñd

ci� = g0 − ln� ñp

ñd
� − ln�ci� , �A9�

where g0 is the standard free energy of the protonation process. Then Eq. �A8� reads as

J =
1

2

sinh�− ��G + U�/2�

�̄a cosh���G + U�/2� + sinh�− ��G + U�/2���a + �̄g cosh�G1 + G2 + U − ln��d/�p�
2

� . �A10�
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Here X̄a=1 /2�Xd+Xp� denotes the arithmetic, X̄g=	XdXp the
geometric mean of some parameter X in the deprotonated
and protonated state, and ��=1 /2��A→B−�B→A� is the anti-
symmetric counterpart to the symmetrized first passage time
in Eq. �A5�. In the derivation of Eq. �A10� from Eq. �A8� we
exploited the relation ��ñi / ñi��i=��i for each protonation
state i=d , p.24

2. Specific occupation number and first passage time
in a linear potential

A constant external force F superimposes a linear poten-
tial U�x�=−Fx on an existing internal potential determined
by the ring neighborhood interaction. At first we will now
focus solely on the first and neglect internal interactions. We
consider unidirectional steady state diffusion on a path in the
protonated or deprotonated state characterized by the index
i= p ,d, against the external force from cross point A at posi-
tion x=0 to cross point B at position x=Li. The occupation
number nA→B gives the probability to find the system within
that path normalized by the boundary probability density �A.
From Eq. �5� one can readily determine the diffusive flow in
the steady state by integration when one respects the equiva-
lence ��x−F�x��=exp�−U�x���x exp�U�x��. Within a linear
potential, one gets

JA→B = D��
0

Li

dx exp�U�x���−1

eU�0��A = D
Ui

Li

1

eUi − 1
�A,

�A11�

where Ui=U�Li�=−FLi. The probability density in the steady
state is obtained from Eq. �5� as

eU�x���x� − eU�0��A = −
JA→B

D
�

0

x

d�eU���

= −
JA→B

D

Li

Ui
�eU�x� − 1� . �A12�

Insertion of the flow of Eq. �A11� and integration of the
probability density then provides the specific occupation
number as

nA→B = �A
−1�

0

Li

dx��x� = Li� 1

Ui
−

1

eUi − 1
� . �A13�

Note that for the normalized occupation number ñA→B

=nA→B holds since U�0�=0. Vice versa one obtains nB→A by
just inverting the sign of Ui in the above equation, however,
for the specific occupation number one has to consider that
ñB→A=e−UinB→A. Hence, one obtains for the symmetrized
specific occupation number in either protonation state

ñi =
1

2
�ñA→B + ñB→A� =

1

2

Li

Ui
�1 − e−Ui� . �A14�

Similarly the antisymmetric part is determined as

�ñi =
1

2
�ñA→B − ñB→A� =

Li

Ui

sinh�Ui� − Ui

eUi − 1
. �A15�

Up to now we only considered the influence of the external
interaction on the occupation number. Potentials reflecting

internal interactions have to be superimposed on U�x�. In this
paper they were assumed to be constant �i on the path 0

x
Li. Then, the occupation numbers scales with the factor

ñi��i� = e−�iñi�0� �A16�

as substitution of U�x�→U�x�+�i in Eqs. �A11�–�A13�
demonstrates. The same is true for �ñ. Superimposing con-
stant potentials on the diffusion pathways allows factorizing
of the generalized equilibrium constant into a component
characterizing the internal and external interaction. Therefore
the corresponding potential �Eq. �A9�� may be written as

Gj = − ln�Kcj�

= g0 − ln� ñp

ñd
� − ln�cj�

= g0 + �p − �d − ln�cj�

=Gj,int

− ln�1 − exp�− Up�
1 − exp�− Ud��

=Gext

,

�A17�

where we exploited that Up /Lp=Ud /Ld=−F.
The regular first passage time to pass an interval of

length Li from one end A to the other B is22

�A→B = D−1�
0

Li

deU���
0



d�e−U���, �A18�

where the diffusion coefficient D was taken as constant. For
a linear potential, one gets

�A→B =
Li

2

D

eUi − Ui − 1

Ui
2 , �A19�

and vice versa for �B→A by changing the sign of Ui. Hence,
the symmetrized �i=1 /2��A→B+�B→A� and antisymmetrized
��i=1 /2��A→B−�B→A� first passage times in either protona-
tion state are

�i =
Li

2

2D

sinh2�Ui/2�
�Ui/2�2 ,

�A20�

��i =
Li

2

D

sinh�Ui� − Ui

Ui
2 .

Note that the first passage time in Eq. �A18� does not change
when constant potentials �i are superimposed, since
eU��+�ie−U���−�i =eU��e−U���. So the symmetrized and anti-
symmetrized first passage times are not affected either.

3. Rotor and effective rotation-general case

In the case we discuss in the main paper, the free energy
in the protonated state becomes a multivalued function of the
diffusion path. When we consider in Fig. 8 diffusion in the
protonated state from II to III, the motor reaches the potential

�III
�r� = Up

�r�, �A21�

when it takes the right path, but
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�III
�l� = − Up

�l� = − Ud, �A22�

when it takes the left path. Hence, one cannot simply assign
cross points free energy levels so that diffusive flow is driven
by an activity gradient �e�II�II−e�III�III� �Eq. �A7��, a prereq-
uisite to obtain flow from Eqs. �A8� and �A10�. However,
one can accomplish this by introducing effective potentials
��eff�. One has to keep in mind that flow in the protonated
state is the sum of flow on the left and right paths

JII�III = Jp
�l� + Jp

�r�. �A23�

Flow on each particular path is obtained from Fick’s equa-
tion �A7�,

Jp
�l� =

ñp
�l�

�p
�l� �exp��II

�l���II − exp��III
�l���III�

=
ñp

�l�

�p
�l� ��II − exp�− Up

�l���III� �A24�

and

Jp
�r� =

ñp
�r�

�p
�r� �exp��II

�r���II − exp��III
�r���III�

=
ñp

�r�

�p
�r� ��II − exp�Up

�r���III� , �A25�

where we defined the cross point �II� as reference point with
�II

�l�=�II
�r�=0, i.e., only the free energy at point �III� becomes

path dependent. The parameters ñp
�j� and �p

�j� are obtained
from Eq. �A5�. When we define

�II
�eff� = 0,

�A26�

�III
�eff� = ln�

ñp
�l�

�p
�l� exp��III

�l�� +
ñp

�r�

�p
�r� exp��III

�r��

ñp
�l�

�p
�l� +

ñp
�r�

�p
�r�

�
= ln�

ñp
�l�

�p
�l� e−Ud +

ñp
�r�

�p
�r� eUp

�r�

ñp
�l�

�p
�l� +

ñp
�r�

�p
�r�

�
�note Up

�l�=Ud� we obtain with Eqs. �A23� and �A24�

JII�III = � ñp
�l�

�p
�l� +

ñp
�r�

�p
�r� ��exp��II

�eff���II − exp��III
�eff���III� ,

�A27�

i.e., diffusive flow is driven by a gradient of effective activi-
ties. It is worth to note that detailed balance is not fulfilled in
the protonated state since the external force superimposes a
nonconservative force field. A vanishing diffusive flow in
Eq. �A27� for equal effective activities just implies that
Jp

�l�=−Jp
�r�, i.e., a circular diffusive flow. This will be of im-

portance for determination of the effective rotation.
To bring Eq. �A27� into the form of Eq. �A7�, one has to

define appropriate expression for the specific occupation

number ñ and first passage time �. According to Eq. �A1�
diffusive flow in the protonated state may written as

JII�III =
nII→III

�II→III
�II −

nIII→II

�III→II
�III. �A28�

Similar to Eqs. �A3�–�A6�, a vanishing flow for equal activi-
ties �Eq. �A27�� implies from Eq. �A28�

exp�− �II
�eff��

nII→III

�II→III
= exp�− �III

�eff��
nIII→II

�III→II
. �A29�

Hence, with symmetrized normalized specific occupation
number and first passage time

ñp = 1
2 �exp�− �II

�eff��nII→III + exp�− �III
�eff��nIII→II� ,

�A30�
�p = 1

2 ��II→III + �III→II�

flow can be written finally in the form of Eq. �A7�

JII�III =
ñp

�p
�exp��II

�eff���II − exp��III
�eff���III� . �A31�

What is left is the determination of the specific occupation
numbers nII→III ,nIII→II and first passage times �II→III ,�III→II.
Specific occupation numbers in the protonated state are the
sum of respective numbers on each path, nII→III=nII→III

�l�

+nII→III
�r� , and similarly for nIII→II. For the determination of

the first passage times, one exploits that flow is sum of flow
on the left and right paths, i.e., for II→ III

nII→III

�II→III
=

nII→III
�l�

�II→III
�l� +

nII→III
�r�

�II→III
�r� , �A32�

and, hence, 1 /�II→III is just the occupation number weighted
average of first passage rates on the single paths 1 /�II→III

�l,r� .
The same hold for parameters in direction III→ II. The oc-
cupation number and first passage times characterizing the
left or right path are determined according to Appendix A2.

Equation �A31� expresses diffusive flow on the assembly
of left and right diffusion paths in the form of Fick’s diffu-
sion law. Hence, one can directly apply Eqs. �A8� and �A10�
to determine flow in the steady state. Note that the workload
U in Eq. �A10� is replaced by an effective workload
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U → U�eff� = Ud + ��III
�eff� − �II

�eff�� . �A33�

The efficiency factor f determining the fraction of flow J
transformed into effective rotation, takes, respecting the con-
straint that the motor is confined to the left path in the depro-
tonated state �Jd

�l�=J�, the form

f = �Jd
�l�1 − Jp

�l��/J

= 1 −
e�II

�l�
�II − e�III

�l�
�III

e�II
�eff�

�II − e�III
�eff�

�III

ñp
�l�

�p
�l�

ñp

�p

= 1 −
�II − e−Ud�III

�II − e�III
�eff�

�III

ñp
�l�

�p
�l�

ñp

�p

.

�A34�

The fact that different activities act as driving forces on the
left and on the left plus right path in the protonated state
explains that f has not the simple form as in the case without
workload �Eq. �38��. Instead one has to determine the steady
state probability densities at the cross points of chemical
transition and diffusion �X, X=I , . . . , IV, which determines f
as

f = 1 −
exp�− Ud/2�

sinh�−
�G + U�eff�

2
�

��exp�−
�III

�eff�

2
�sinh�−

�G

2
�� ñp

�l�

�p
�l� �� ñp

�p
�−1

+ exp��III
�eff�

2
�sinh�U�eff�

2
�

�exp�−
G1 + G2 + U�eff� − ln��d/�p�

2
�� , �A35�

where the driving forces Gi are defined in Eq. �A9�, i.e.,
�G=−ln�c1 /c2�. Note that in the absence of external forces
�U�eff�=0� the last summand in the bracket vanishes and f
takes the simple form of Eq. �38�.

When we assume constant interaction potentials in the
deprotonated �d and on the left and right paths in the proto-
nated state �p

�l� ,�p
�r�, and insert parameters for work against a

constant force �see Appendix A2�, we obtain f as a function
of the workload the motor performs after one complete cycle
U=Ud+Up

�r� �see Fig. 8�,

f =
�eU − eU0��e�d + eg0−ln�c1�+�p

�l�
�

e�p
�r�+Up

�l�
eg0�c2 − c1�

eUp
�r�

− 1

eUp
�l�

− 1
+ �eU − eU0��e�d + eg0−ln�c1�+�p

�l�
� − e�d�eU − 1�

=

2 sinh�U − U0

2
�e�̄

e�p
�r�

eg0�c2 − c1�
sinh�Up

�r�/2�
sinh�Ud/2�

+ 2 sinh�U − U0

2
�e�̄ − 2e�d sinh�U/2�

, �A36�

where

�̄ = 1
2 �ln�e�d + e�p

�l�+g0−ln c2� + ln�e�d + e�p
�l�+g0−ln c1�� ,

�A37�

and U0 is the external workload when rotation vanishes
�f =0� �see Fig. 11�,

U0 = ln� e�d + e�p
�l�+g0−ln c2

e�d + e�p
�l�+g0−ln c1

� . �A38�

Note that stabilizing the protonated state by g0→−� or

�d→ +� implies U0→0, �̄→�d and, hence, f →−�, i.e.,
the rotor spins in the protonated state solely driven by the
external force. Stabilizing the right path of the protonated
state �p

�l�→ +� implies that the whole chemical gradient is
used for directed rotation U0→ ln�c1 /c2�=−�G and f →1.
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